

5.1 Rates, equilibrium and pH

5.1.1 How Fast?

	R	A	G
--	---	---	---

- Explain and use the terms: rate of reaction, order, overall order, rate constant, half-life, rate-determining step
 Deduction of orders from experimental data
 Deduction of a rate equation from orders of the form: rate = $k[A]^m[B]^n$
 Calculate rate constant k , and related quantities, from a rate equation including determining units
 Deduce the order with respect to a reactant from the shape of a concentration-time graph
 Calculate the reaction rate from the gradient of a concentration-time graph
 Find the constant half-life from a concentration-time graph of a first order reaction
 Determine the rate constant, k , for a first order reaction from the constant half life
 Deduce the order with respect to a reactant from a rate-concentration graph
 Determine the rate constant for a first order reaction from the gradient of a rate-concentration graph
 Describe techniques and procedures used to investigate reaction rates by the initial rates method, including calorimetry
 Predict a rate equation consistent with the rate-determining step of a multi-step reaction
 Predict possible steps in a reaction mechanism for the rate equation and the balanced equation for a multistep
 Qualitative explanation of the affect of temperature change on the rate of a reaction and the rate constant
 Use the Arrhenius equation to find the exponential relationship between the rate constant and temperature
 Use the Arrhenius equation to determine E_a and A graphically

5.1.2 How Far?

	R	A	G
--	---	---	---

- Use the terms mole fraction and partial pressure
 Calculate quantities at equilibrium
 Describe techniques and procedures used to determine quantities present at equilibrium
 Use expressions for K_c and K_p for homogeneous and heterogeneous equilibria
 Calculate K_c and K_p including the determination of units
 Describe the qualitative effect on equilibrium constants of changing temperature for exothermic and endothermic reactions
 Describe the constancy of equilibrium constants with changes in concentration, pressure or the presence of a catalyst
 Explanation of how an equilibrium constant controls the position of equilibrium on changing concentration, pressure and temperature
 Application of above principles for K_c , K_p to other equilibrium constants

5.1.3 Acids, bases and buffers

	R	A	G
--	---	---	---

- Define an Brønsted- lowry acid and base in terms of protons
 Use the term conjugate acid-base pairs
 Use the terms monobasic, dibasic and tribasic
 Describe the role of H^+ in the reaction of acids with metals and bases using ionic equations
 Use the acid dissociation constant K_a for the extent of acid dissociation
 Describe the relationship between K_a and pK_a
 Use the expressions for pH as: $pH = -\log[H^+]$; $[H^+] = 10^{-pH}$
 Use of the expression for the ionic product of water K_w
 Calculations of pH for: strong monobasic acids and strong bases (using K_w)
 Calculations of pH, K_a or related quantities for a weak monobasic acid using approximations
 Describe the limitations of using approximations to K_a related calculations for 'stronger' weak acids
 Define the term buffer
 Describe the formation of a buffer from a weak acid and salt of the weak acid
 Describe the formation of a buffer from excess of weak acid and a strong alkali
 Explanation of the role of a conjugate acid-base pair in an acid buffer solution
 Calculation of the pH of a buffer solution from the K_a value of a weak acid and the equilibrium concentrations
 Explanation of the control of blood pH by the carbonic acid- hydrogencarbonate buffer system
 Use of pH titration curves for combinations of strong and weak acid
 Describe the techniques and procedures used when measuring pH with a pH meter

5.2 Energy

5.2.1 Lattice energy			
	R	A	G
5.2.1 Lattice energy	Explanation of the term lattice energy and its use as a measure of the strength of ionic bonding in a giant ionic lattice		
	Use of lattice enthalpy of a simple ionic solid and relevant energy terms for the construction of Born-Haber cycles		
	Use of lattice enthalpy of a simple ionic solid and relevant energy terms for related calculations		
	Explanation and use of the term enthalpy change of solution		
	Explanation and use of the term enthalpy change of hydration		
	Use of the enthalpy change of solution and energy terms for the construction of enthalpy cycles		
	Use of the enthalpy change of solution and energy terms for related calculations		
5.2.2 Enthalpy and entropy			
5.2.2 Enthalpy and entropy	Explanation of term entropy		
	Explanation of the difference in magnitude of the entropy system of solids, liquids and gases		
	Explanation of the difference in magnitude of the entropy system for a reaction with a change in number of gaseous molecules		
	Calculation of the entropy change of a system ΔS and related quantities		
	Explanation on the feasibility of a process based on $T\Delta S$ and ΔH		
	Explanation, and related calculations for free energy ΔG		
	Explanation of process feasibility in terms of ΔG		
5.2.3 Redox and electrode potentials			
5.2.3 Redox and electrode potentials	Explanation and use of the terms oxidising agent and reducing agent		
	Construction of redox equations using half-equations and oxidation numbers		
	Interpretation and prediction of reactions involving electron transfer		
	Describe techniques and procedures used when carrying out redox titrations		
	Use of structured and non-structured titration calculations, based on experimental results of redox titrations		
	Use of the term standard electrode (redox) potential including its measurement		
	Describe techniques and procedures used for the measurement of cell potentials		
	Calculation of standard cell potential by combining two standard electrode potentials		
	Prediction of feasibility of a reaction and limitations using standard electrode potentials		
	Application of principles of electrode potentials to modern storage cells		
Explanation of a fuel cell in terms of oxygen			

5.3 Transition elements

5.3.1 Transition elements		R	A	G
5.3.1 Transition elements	Electron configuration of atoms and ions of the d-block elements of period 4, given atomic number and charge			
	Know the elements Ti- Cu as transition elements			
	Illustration using at least two transition elements of: the existence of more than 1 oxidation state			
	Illustration using at least two transition elements of: the formation of coloured ions			
	Illustration using at least two transition elements of: the catalytic behaviour of elements and compounds			
	Explanation of the term ligand in terms of coordinate bonding, including bidentate ligands			
	Use of terms complex ion and coordination number			
	Examples of complexes with six-fold coordination with an octohedral shape			
	Examples of complexes with four-fold coordination with either a planar or tetrahedral shape			
	Types of stereoisomerism shown by complexes including those associated with bidentate and multidentate ligands			
	Use of cis-platin as an anticancer drug and its action			
	Ligand substitution reactions and the accompanying colour changes			
	Explanation of the biochemical importance of iron in haemoglobin, including ligand substitutuion			
	Precipitaion reactions, including ionic equations and colour changes for transition element ions with sodium hydroxide and ammonia			
	Complex formation with sodium hydroxide(aq) and ammonia(aq)			
	Redox reactions and colour changes for interconversions between Fe^{2+} and Fe^{3+}			
	Redox reactions and colour changes for interconversions between Cr^{3+} and $\text{Cr}_2\text{O}_7^{2-}$			
	Redox reactions and colour changes for reduction of Cu^{2+} to Cu^+ and disproportionation			
	Interpretation and prediction of unfamiliar reactions including ligand substitution, precipitation and redox			
5.3.2 Qualitative analysis		R	A	G
5.3.2 Qualitative analysis	Qualitative analysis of ions on a test tube scale			

6.1 Aromatic compounds, carbonyls and acids

6.1.1 Aromatic compounds		R	A	G
6.1.1 Aromatic compounds	Comparison of the Kekulé model of benzene and the subsequent delocalised models			
	Experimental evidence for delocalised, rather than Kekulé model			
	Use of IUPAC rules of nomenclature for systematically naming substituted aromatic compounds			
	Understanding of electrophilic substitution of aromatic compounds with concentrated nitric acid			
	Understanding of electrophilic substitution of aromatic compounds with a halogen			
	Understanding of electrophilic substitution of aromatic compounds with a haloalkane or acyl chloride			
	Understanding of mechanism of electrophilic substitution in arenes for nitration and halogenation			
	Explanation of the relative resistance to bromination of benzene compared with alkenes			
	Interpretation of unfamiliar electrophilic substitution reactions of aromatic compounds			
	Understanding of the weak acidity of phenols			
	Understanding of the electrophilic substitution reactions of phenol with bromine and dilute nitric acid			
	Explanation of the relative ease of electrophilic substitution of phenol compared to benzene			
	Explanation of the 2- and 4-directing effect of electron donating groups in electrophilic substitution of aromatic compounds			
6.1.2 Carbonyl compounds	Understanding of 3-directing effect of electron withdrawing groups in electrophilic substitution of aromatic compounds			
	Prediction of substitution products of aromatic compounds			
6.1.2 Carbonyl compounds		R	A	G
6.1.2 Carbonyl compounds	Understand oxidation of aldehydes using $\text{Cr}_2\text{O}_7^{2-}/\text{H}^+$ to form carboxylic acids			
	Understand nucleophilic addition reactions of carbonyl compounds with NaBH_4 and HCN			
	Describe the mechanism of nucleophilic addition reactions of aldehydes and ketones with NaBH_4 and HCN			
	Describe the use of 2,4-dinitrophenolhydrazine to detect the presence of a carbonyl group			
	Describe the use of 2,4-dinitrophenolhydrazine to identify a carbonyl compound from the melting point of the derivative			
	Describe the use of Tollens' reagent to detect the presence of an aldehyde group			
6.1.3 Carboxylic acids and esters	Describe the use of Tollens' reagent to distinguish between aldehydes and ketones, with explanation			
6.1.3 Carboxylic acids and esters		R	A	G
Explanation of the water solubility of carboxylic acids in terms of hydrogen bonding				
Description of the reactions of carboxylic acids with metals and bases				
Understanding of esterification of carboxylic acids with alcohols in the presence of an acid catalyst				
Understanding of esterification of acid anhydrides with alcohols				
Understanding of hydrolysis of esters in hot aqueous acid to form carboxylic acids and alcohols				
Understanding of hydrolysis of esters in hot aqueous alkali to form carboxylate salts and alcohols				
6.1.3 Carboxylic acids and esters	Understanding of the formation of acyl chlorides from carboxylic acids using SOCl_2			
	Use of acyl chlorides in synthesis in formation of esters, carboxylic acids and primary and secondary amides			

6.2 Nitrogen compounds, polymers and synthesis

6.2.1 Amines			R	A	G
6.2.1 Amines	Explain basicity of amines in terms of protons and reactions with dilute acids				
	Understand the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia and amines				
	Understand the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid				
6.2.2 Amino acids, amides and chirality			R	A	G
6.2.2 Amino acids, amides and chirality	State the general formula for an α -amino acids as $\text{RCH}(\text{NH}_2)\text{COOH}$				
	Understand the reactions of the carboxylic acid group with alkalis and in the formation of esters				
	Understand the reaction of the amine group with acids				
	Describe the structures of primary and secondary amides				
	Understanding of optical isomerism				
6.2.3 Polyesters and polyamides			R	A	G
6.2.3 Polyesters and polyamides	Understanding of condensation polymerisation to form polyesters and polyamides				
	Understanding of the acid and base hydrolysis of ester groups in polyesters and amide groups in polyamides				
	Prediction from addition and condensation reactions of: the repeat unit, monomer required, type of polymerisation				
6.2.4 Carbon-carbon bond formation			R	A	G
6.2.4 Carbon-carbon bond formation	Describe the use of C-C bond formation in synthesis to increase the length of a carbon chain				
	Understand the formation of $\text{C}-\text{C}=\text{N}$ by reaction of haloalkanes with CN^- and ethanol, including mechanism				
	Understand the formation of $\text{C}-\text{C}=\text{N}$ by reaction of carbonyl compounds with HCN , including mechanism				
	Understand the reaction of nitriles by reduction and acid hydrolysis				
	Understand the formation of substituted aromatic C-C by alkylation and acylation (Friedel-Crafts reaction)				
6.2.5 Organic synthesis			R	A	G
6.2.5 Organic synthesis	Describe techniques and procedures used for the preparation and purification of organic solids				
	Describe the synthetic routes for an organic molecule containing several functional groups				
	Describe the multistage synthetic routes for the preparation of organic compounds				

6.3 Analysis

6.3.1 Chromatography and qualitative analysis		R	A	G
6.3.1 Chromatography and qualitative analysis	Interpretation of one-way TLC chromatograms in terms of R _f values			
	Interpretation of gas chromatograms in terms of retention rates and the amounts and proportions of the components			
	Qualitative analysis of organic functional groups on a test tube scale: alkenes by bromine			
	Qualitative analysis of organic functional groups on a test tube scale: Halogenoalkanes by aqueous silver nitrate in ethanol			
	Qualitative analysis of organic functional groups on a test tube scale: Phenols by weak acidity but no reaction with CO ₃ ²⁻			
	Qualitative analysis of organic functional groups on a test tube scale: Carbonyl compounds by reaction with 2,4-DNP			
	Qualitative analysis of organic functional groups on a test tube scale: Aldehydes by reaction with Tollens' reagent			
	Qualitative analysis of organic functional groups on a test tube scale: Primary and secondary alcohols and aldehydes by reaction with acidified dichromate			
6.3.2 Spectroscopy	Qualitative analysis of organic functional groups on a test tube scale: Carboxylic acids by reaction with CO ₃ ²⁻			
6.3.2 Spectroscopy		R	A	G
Analyse carbon-13 NMR spectrum of an organic molecule to make predictions				
Analyse high resolution proton NMR spectrum of an organic molecule to make predictions				
Predict the carbon-13 or proton NMR spectrum for a given molecule				
Explain the use of tetramethylsilane, TMS, as the standard for chemical shift measurements				
Explain the need for deuterated solvents when running an NMR spectrum				
Identify O-H and N-H protons by proton exchange using D ₂ O				
Deduce the structures of organic compounds from different analytical data				