

Module 1: Development of practical skills in chemistry

1.1 Practical skills assessed in the written examination

	R	A	G
--	---	---	---

Experimental design, including to solve problems set in a practical context
 Identification of variables that must be controlled, where appropriate
 Evaluation that an experimental method is appropriate to meet the expected outcomes
 How to use a wide range of practical apparatus and techniques correctly
 Appropriate units for measurements
 Presenting observations and data in an appropriate format
 Processing, analysing and interpreting qualitative and quantitative experimental results
 Use of appropriate mathematical skills for analysis of quantitative data
 Appropriate use of significant figures
 Plotting and interpreting suitable graphs from experimental results including: selection and labelling of axes with appropriate scales, quantities and units
 Plotting and interpreting suitable graphs from experimental results including: measurement of gradients and intercepts
 Evaluate results and draw conclusions
 Identify anomalies in experimental measurements
 Identify the limitations in experimental procedures
 Precision and accuracy of measurements and data (Margins of error, percentage error and apparatus uncertainties)
 Refining experimental design by suggestion of improvements to the procedure and apparatus

Module 2: Foundations in chemistry

2.1 Atoms and reactions

	R	A	G
--	---	---	---

Define isotope
 Describe atomic structure in terms of protons, electrons, neutrons for atoms and ions given the atomic number, mass number and ionic charge
 Explain the terms relative isotopic and relative atomic mass, based on the mass of a ^{12}C atom
 Use of mass spectrometry in: the determination of relative isotopic mass and relative abundances of its isotopes
 Use of mass spectrometry in: calculation of the relative atomic mass from the relative abundances of its isotopes
 Use of the terms relative molecular mass (Mr) and relative formula mass and their calculation from relative atomic masses
 Write the formulae of ionic compounds from ionic charges including: prediction of ionic charge from the position in the periodic table
 Write the formulae of ionic compounds from ionic charges including: recall of the names and formulae for the following ions: NO_3^- , CO_3^{2-} , SO_4^{2-} , OH^- , NH_4^+ , Zn^{2+} and Ag^+
 Construction of balanced equations (including ionic), with state symbols, for familiar and unfamiliar reactions
 Explanation and use of the terms: amount of substance, mole, Avogadro constant, molar mass, molar gas volume
 Use of the terms empirical formula and molecular formula
 Calculations of empirical and molecular formulae from composition by mass or percentage compositions by mass and relative formula mass
 Understand the terms anhydrous, hydrated and water of crystallisation
 Calculation of the formula of a hydrated salt from percentage composition, mass composition or experimental results
 Mole calculations involving: mass, gas volume, solution concentration and volume
 Calculations involving the ideal gas equation: $\text{pV} = \text{nRT}$
 Use of stoichiometric relationships in calculations
 Calculations to determine the percentage yield of a reaction or related quantities
 Calculations to determine the atom economy of a reaction
 Knowledge of techniques and procedures required during experiments requiring the measurement of mass, volumes of solutions and gas volumes
 Benefits for sustainability of developing chemical processes with a high atom economy
 Know the formulae of the common acids and alkalis
 Explain acids release H^+ ions in aqueous solutions and alkalis release OH^- ions in aqueous solutions
 Explain qualitatively strong and weak acids in terms of dissociation
 Understand neutralisation in terms of ions to form water and salts
 Techniques and procedures used when preparing a standard solution of required concentration and carrying out an acid-base titration
 Structured and non-structured titration calculations, based on experimental results for familiar and unfamiliar acids and bases
 Rules for assigning and calculating oxidation number for atoms in elements, compounds and ions
 Write formulae using oxidation numbers
 Use Roman numerals to indicate the magnitude of the oxidation number where applicable
 Explain oxidation and reduction in terms of electron transfer and changes in oxidation number
 Full equations (not ionic) for the redox reactions of metals with acids to form salts
 Interpretation of redox reactions to make predictions in terms of oxidation numbers and electron loss/gain

1.1 Practical skills assessed in the written examination

2.1 Atoms and reactions

2.2 Electrons, bonding and structure		
	R	A
	G	
2.2 Electrons, bonding and structure		
Know the number of electrons that can fill the first four shells		
Define atom orbitals as: regions around the nucleus that can hold up to two electrons, with opposite spins		
Know the shapes of s and p orbitals; the number of orbitals making up s, p and d sub-shells and the number of electrons that can fill these shells		
Know how to fill these orbitals		
Deduce the electron configuration of atoms given their atomic number (up to Z=36)		
Deduce the electron configuration of ions given the atomic number and ionic charge; limited to s and p-blocks (up to Z=36)		
Define ionic bonding and use dot and cross diagrams		
Explain the solid structures of giant ionic lattices		
Explain the effect of structure and bonding on the physical properties of ionic compounds (melting and boiling points, electrical conductivity)		
Define covalent bonding		
Construct dot and cross diagrams to describe: single, double and dative covalent bonding		
Define and use the term average bond enthalpy		
Know the shapes of and bond angles in molecules and ions up to six electron pairs surrounding the central atom		
Use electron pair repulsion to explain these shapes of molecules and ions: linear, non-linear, trigonal planar, pyramidal, tetrahedral, octahedral		
Define electronegativity		
Explain polar bond and permanent dipole within molecules containing covalently- bonded atoms with different electronegativities		
Explain a polar molecule and overall dipole in terms of permanent dipole(s) and molecular shape		
Define intermolecular forces based on dipoles		
Define hydrogen bonding		
Explain the anomalous properties of water resulting from hydrogen bonding (density, melting and boiling points)		
Explanation of the solid structures of simple molecular lattices		
Explanation of the structure and bonding on the physical properties of covalent compounds with simple molecular structures		

Module 3: Periodic table and energy

3.1 The periodic table

	R	A	G
Describe the periodic table in terms of: atomic number, periods, periodicity and groups			
Describe the trend in electron configuration across periods 2 and 3			
Describe the classification of elements into s, p and d-blocks			
Define first ionisation energy			
Explain the trend in first ionisation energies across Periods 2 and 3 and down a group (attraction, nuclear charge and atomic radius)			
Predict from successive ionisation energies, the number of electrons in each shell of an atom and the group of an element			
Explain metallic bonding in terms of electrostatic attraction between cations and delocalised electrons			
Explain giant lattice structures e.g metals			
Explain the solid covalent lattices of carbon and silicon			
Explain the physical properties of giant metallic and giant covalent lattices			
Explain the variation in melting points across Periods 2 and 3			
Describe the outer shell s^2 electron configuration and the loss of these electrons in redox reactions to form $2+$ ions			
Describe the relative reactivities of the Group 2 elements shown by their reactions with oxygen, water and dilute acids			
Trend in reactivity in terms of the first and second ionisation energies of Group 2 elements down the group			
The action of water on Group 2 oxides and the approximate pH of any resulting solution			
Uses of Group 2 compounds as bases, including equations, e.g. $\text{Ca}(\text{OH})_2$ in agriculture and $\text{Mg}(\text{OH})_2$ and CaCO_3 as antacids			
Explain the trend in boiling points of Cl_2 , Br_2 and I_2 in terms of induced dipole-dipole interactions			
The outer shell s^2p^5 electron configuration of halogens and the gaining of one electron in many redox reactions to form $1-$ ions			
Trend in reactivity of the halogens, illustrated by the reaction with other halide ions			
Explanation of this trend in terms of attraction, atomic radius and electron shielding			
Explanation of the term disproportionation illustrated by: water purification, formation of bleach and reactions analogous to these			
The benefits and associated risks of chlorine use in water treatment			
The precipitation reactions, including ionic equations, of the aqueous anions Cl^- , Br^- and I^- with aqueous silver ions followed by aqueous ammonia			
Qualitative analysis of ions on a test-tube scale, processes and techniques needed to identify the specified ions in an unknown compound			

3.2 Physical chemistry

	R	A	G
Explain some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic			
Construct energy profile diagrams to show the difference in the enthalpy of reactants compare with products			
Explain qualitatively the term activation energy including the use of enthalpy profile diagrams			
Explanation and use of the terms: standard conditions, standard states; enthalpy change of reaction, formation, combustion and neutralisation			
Determination of enthalpy changes including the relationship: $q = mc\Delta T$			
Explanation of the term average bond enthalpy			
Explanation of exothermic and endothermic reactions in terms of enthalpy changes associated with making and breaking bonds			
Use of average bond enthalpies to calculate enthalpy changes and related quantities			
Use Hess' law to determine indirectly: an enthalpy change of reaction from enthalpy changes of combustion			
Use Hess' law to determine indirectly: an enthalpy change of reaction from enthalpy changes of formation			
Use Hess' law to determine indirectly: from unfamiliar enthalpy cycles			
Techniques and procedures used to determine enthalpy changes directly and indirectly			
The effect of concentration, including pressure of gases, on the rate of reaction			
Calculation of reaction rate from the gradients of graphs measuring how a physical quantity changes with time			
Explain the role of a catalyst (reaction rate, not used up in overall reaction, activation energy)			
Explain the terms homogeneous and heterogeneous catalysts			
Explain the economic importance and benefits of catalysts			
Techniques and procedures used to investigate reaction rates			
Qualitative explanation of the Boltzmann distribution and its relationship with activation energy			
Explanation of the impact of temperature changes on the Boltzmann distribution			
Explanation of the impact of catalytic behaviour on the Boltzmann distribution			
Explanation of dynamic equilibrium			
Le Chatelier's principle to deduce qualitatively the effect of a change in temperature, pressure or concentration on the position of equilibrium			
Explanation of how catalysts affect equilibrium			
Techniques and procedures used to investigate changes to the position of equilibrium (temperature and pressure)			
Explain the importance of compromise between chemical equilibrium and reaction rate			
Calculations of the equilibrium constant K_c , from provided equilibrium concentrations and the creation of expressions for K_c			
Estimation of the position of equilibrium from the magnitude of K_c			

Module 4: Core organic chemistry

4.1 Basic concepts and hydrocarbons			
	R	A	G
4.1 Basic concepts and hydrocarbons	Apply IUPAC rules of nomenclature for systematically naming organic compounds		
	Interpret and use the terms: general formula, structural formula, displayed formula, skeletal formula		
	Interpret and use the terms: homologous series, functional group, alkyl group, aliphatic, alicyclic, aromatic, saturated		
	Use the general formula of a homologous series to predict the formula of any member of the series		
	Explain the term structural isomer and determine the possible structural formulae of an organic molecule, given the molecular formula		
	Understand the different types of covalent bond fission: homolytic, heterolytic		
	Understand the term radical and the use of dots		
	Understand the use of curly arrows		
	Use diagrams to show the movement of an electron pair in a reaction mechanism		
	Alkanes as saturated hydrocarbons containing single C-C and C-H bonds with free rotation around s-bonds		
	Explain the tetrahedral shape around each carbon in alkanes in terms of electron pair repulsion (including 3-D diagrams)		
	Explain the variations in boiling points of alkanes (carbon chain length and branching) in terms of induced dipole-dipole interactions (London)		
	Low reactivity of alkanes in terms of high bond enthalpy and very low polarity of the s-bonds		
	Complete and incomplete combustion of alkane fuels		
	Reaction of alkanes with chlorine and bromine by radical substitution using UV radiation, including the mechanism (initiation, propagation and termination)		
	Limitations of radical substitution in synthesis		
	Alkenes as unsaturated hydrocarbons containing C=C bond with p-bond and s-bond and restricted rotation of the p-bond		
	Explain the trigonal planar shape and bond angle around each carbon in the C=C of alkenes in terms of electron pair repulsion		
	Explain the terms: stereoisomers, E/Z isomerism, cis-trans isomerism		
	Use of Cahn-Ingold-Prelog (CIP) priority rules to identify the E and Z stereoisomers		
	Determine the possible E/Z or cis-trans stereoisomer of an organic molecule, given its structural formula		
	Reactivity of alkenes in terms of the relatively low bond enthalpy of the p-bond		
	Addition reactions of alkenes with: hydrogen, halogens, hydrogen halides and steam		
	Use of bromine to detect the presence of a C+C bond as a test for unsaturation		
	Define and use the term electrophile		
	Mechanism of electrophilic addition in alkenes by heterolytic fission		
	Use of Markownikoff's rule to predict formation of a major organic product in addition reactions of H-X to unsymmetrical alkenes		
	Addition polymerisation of alkanes and substituted alkenes: deduce repeat unit of an addition polymer given the monomer		
	Identify the monomer that would produce a section of an addition polymer		
	Benefits for sustainability of processing waste by: combustion, organic feedstock, removal of toxic waste products		
	Benefits to the environment of development of biodegradable and photodegradable polymers		
4.2 Alcohols, haloalkanes and analysis			
	R	A	G
4.2 Alcohols, haloalkanes and analysis	Explain the water solubility and relatively low volatility of alcohols compared to alkanes (polarity, hydrogen bonding)		
	Classification of alcohols into primary, secondary and tertiary alcohols		
	Combustion of alcohols		
	Oxidation of alcohols by an oxidising agent: primary (aldehydes and carboxylic acids); secondary (ketones); tertiary (resistance to oxidation)		
	Elimination of water from alcohols in the presence of an acid catalyst and heat to form alkenes		
	Substitution with halide ions in the presence of acid to form haloalkanes		
	Hydrolysis of haloalkanes in substitution reactions (alkali, water)		
	Define and use the term nucleophile		
	Mechanism of nucleophilic substitution in the hydrolysis of primary haloalkanes with aqueous alkali		
	Explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds		
	Production of halogen radicals by UV radiation action on CFCs in the upper atmosphere and the impact on the ozone layer		
	Equations to represent: production of halogen radicals; the catalysed breakdown of ozone by Cl ⁻ and other radicals		
	Techniques and procedures for the use of quickfit apparatus for: distillation and heating under reflux		
	Techniques and procedures for the use of quickfit apparatus for: Preparation and purification of an organic liquid		
	Identify individual functional groups and predict the properties and reactions for an organic molecule containing several functional groups		
	Two-stage synthetic routes for preparing organic compounds		
	Infrared radiation causes covalent bonds to vibrate more and absorb energy		
	Absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds and the suspected link to global warming		
	Use of infrared spectrum to identify: alcohol (O-H); aldehyde or ketone (C=O); carboxylic acid (C=O and O-H)		
	Interpret and predict infra red spectrum of familiar or unfamiliar substances using data		
	Use of infrared spectroscopy to monitor gases causing air pollution and in modern breathalyzers		
	Use of mass spectrum to identify the molecular ion peak and hence determine the molecular mass		
	Analyse fragmentation peaks in a mass spectrum to identify parts of structures		

Module 5: Physical chemistry and transition elements

5.1 Rates, equilibria and pH	5.1 Rates, equilibria and pH		
	R	A	G
Explain and use of the terms: rate of reaction, order, overall order, rate constant, halflife, rate-determining step			
Deduction of: orders from experimental data; a rate equation from orders of the form: rate = $k[A]^m[B]^n$, where m and n are 0, 1 or 2			
Calculate the rate constant, k, and related quantities, from a rate equation including determination of units			
From a concentration–time graph: deduct the order (0 or 1) with respect to a reactant from the shape of the graph			
Using a concentration–time graph: calculate reaction rates from the measurement of gradients			
Using a concentration–time graph of a first order reaction, measurement of constant half-life, $t_{1/2}$			
Determine, for a first order reaction, the rate constant, k, from the constant half-life, $t_{1/2}$, using the relationship: $k = \ln 2/t_{1/2}$			
Using a rate–concentration graph: deduct the order (0, 1 or 2) with respect to a reactant from the shape of the graph			
Using a rate–concentration graph: determine the rate constant for a first order reaction from the gradient			
techniques and procedures used to investigate reaction rates by the initial rates method and by continuous monitoring, including use of colorimetry			
Predict, for a multi-step reaction, a rate equation that is consistent with the rate-determining step			
Predict, for a multi-step reaction, possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction			
Explain qualitatively, the effect of temperature change on the rate of a reaction and hence the rate constant			
Exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, $k = Ae^{-E_a/RT}$			
Determine E_a and A graphically using: $\ln k = -E_a/RT + \ln A$ derived from the Arrhenius equation.			
Use of the terms mole fraction and partial pressure			
Calculate quantities present at equilibrium, given appropriate data			
Techniques and procedures used to determine quantities present at equilibrium			
Expressions for K_c and K_p for homogeneous and heterogeneous equilibria			
Calculate K_c and K_p , or related quantities, including determination of units			
Qualitative effect on equilibrium constants of changing temperature for exothermic and endothermic reactions			
Constancy of equilibrium constants with changes in concentration, pressure or in the presence of a catalyst			
Explain how an equilibrium constant controls the position of equilibrium on changing concentration, pressure and temperature			
Application of these principles for K_c , K_p to other equilibrium constants			
Define a Brønsted–Lowry acid			
Use of the terms: conjugate acid-base pairs, monobasic, dibasic and tribasic acids			
Role of H^+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations			
Acid dissociation constant, K_a , for the extent of acid dissociation and the relationship between K_a and pK_a			
Use the expression for pH as: $pH = -\log[H^+]$ $[H^+] = 10^{-pH}$; and the expression for the ionic product of water, K_w			
Calculate of pH, or related quantities, for: strong monobasic acids; strong bases, using K_w			
Calculate pH, K_a or related quantities, for a weak monobasic acid using approximations			
Limitations of using approximations to K_a related calculations for 'stronger' weak acids			
Define the term buffer solution			
Formation of a buffer solution from: a weak acid and a salt of the weak acid; excess of a weak acid and a strong alkali			
Explain the role of the conjugate acid-base pair in an acid buffer solution			
Calculate the pH of a buffer solution, from the K_a value of a weak acid and the equilibrium concentrations of the conjugate acid-base pair			
Explain the control of blood pH by the carbonic acid–hydrogencarbonate buffer system			
Sketch and interpret the shapes of pH titration curves for combinations of strong and weak acids with strong and weak bases			
Explain the choice of suitable indicators, given the pH range of the indicator			
Explain indicator colour changes in terms of equilibrium shift between the HA and A^- forms of the indicator			
Techniques and procedures used when measuring pH with a pH meter.			

5.2 Energy			R	A	G
5.2 Energy	Explain the term lattice enthalpy				
	Use the lattice enthalpy of a simple ionic solid and relevant energy terms for: the construction of Born–Haber cycles and related calculations				
	Explain and use the terms enthalpy change of solution and enthalpy change of hydration				
	Use the enthalpy change of solution of a simple ionic solid and relevant energy terms for: the construction of enthalpy cycles and related calculations				
	Explain qualitatively the effect of ionic charge and ionic radius on the exothermic value of a lattice enthalpy and enthalpy change of hydration.				
	Explain entropy is a measure of the dispersal of energy in a system which is greater, the more disordered a system				
	Explain the difference in magnitude of the entropy of a system: of solids, liquids and gases				
	Explain the difference in magnitude of the entropy of a system for a reaction in which there is a change in the number of gaseous molecules				
	Calculate the entropy change of a system, ΔS , and related quantities for a reaction given the entropies of the reactants and products				
	Explain the feasibility of a process depends upon $T\Delta S$, and ΔH				
	Explain, and calculate, the free energy change, ΔG , as: $\Delta G = \Delta H - T\Delta S$; and that a process is feasible when ΔG has a negative value				
	Limitations of predictions made by ΔG about feasibility, in terms of kinetics.				
	Explain and use the terms oxidising agent and reducing agent				
	Construct redox equations using half equations and oxidation numbers				
	Interpret and predict reactions involving electron transfer				
	Techniques and procedures used when carrying out redox titrations				
	Structured and non-structured titration calculations, based on experimental results of redox titrations				
	Use the term standard electrode (redox) potential, E^\ominus including its measurement using a hydrogen electrode				
	Techniques and procedures used for the measurement of cell potentials				
	Calculate a standard cell potential by combining two standard electrode potentials				
	Predict the feasibility of a reaction using standard cell potentials and the limitations of such predictions				
	Apply principles of electrode potentials to modern storage cells				
	Explain how fuel cells create voltage and the changes that take place at each electrode				
5.3 Transition elements			R	A	G
5.3 Transition elements	Electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge				
	Elements Ti–Cu d-block elements that have an ion with an incomplete d-sub-shell (Transition elements)				
	Use at least two transition to demonstrate: the existence of more than one oxidation state for each element in its compounds				
	Use at least two transition to demonstrate: the formation of coloured ions				
	Use at least two transition to demonstrate: the catalytic behaviour of the elements and their compounds and their industrial importance				
	Explain and use the term ligand				
	Use the terms complex ion and coordination number and examples of complexes with: octahedral shape and either a planar or tetrahedral shape				
	Types of stereoisomerism shown by complexes: cis–trans isomerism; optical isomerism				
	Use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division				
	Ligand substitution reactions and the accompanying colour changes				
	Explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O_2 and CO				
	Reactions, including ionic equations, of transition ions with aqueous sodium hydroxide and aqueous ammonia				
	Redox reactions and accompanying colour changes for: interconversions between Fe^{2+} and Fe^{3+}				
	Redox reactions and accompanying colour changes for: interconversions between Cr^{3+} and $Cr_2O_7^{2-}$				
	Redox reactions and accompanying colour changes for: reduction of Cu^{2+} to Cu^+ and disproportionation of Cu^+ to Cu^{2+} and Cu				
	Interpret and predict unfamiliar reactions including ligand substitution, precipitation, redox.				
	Qualitative analysis of ions on a test-tube scale: processes and techniques needed to identify the following ions in an unknown compound				

Module 6: Organic chemistry and analysis

6.1 Aromatic compounds, carbonyls and acids

R	A	G
---	---	---

6.1 Aromatic compounds, carbonyls and acids

- Compare the Kekulé model of benzene with the subsequent delocalised models for benzene; including an examination of the experimental evidence
- Use IUPAC rules of nomenclature for systematically naming substituted aromatic compounds
- Electrophilic substitution of aromatic compounds with: concentrated nitric acid in the presence of concentrated sulfuric acid
- Electrophilic substitution of aromatic compounds with: a halogen in the presence of a halogen carrier
- Electrophilic substitution of aromatic compounds with: a haloalkane or acyl chloride in the presence of a halogen carrier
- Mechanism of electrophilic substitution in arenes for nitration and halogenation
- Explain the relative resistance to bromination of benzene, compared with alkenes
- Interpret unfamiliar electrophilic substitution reactions of aromatic compounds, including prediction of mechanisms
- Weak acidity of phenols shown by the neutralisation reaction with NaOH but absence of reaction with carbonates
- Electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol; with dilute nitric acid to form 2-nitrophenol
- Compare the relative ease of electrophilic substitution of phenol with benzene
- The effect of electrondonating groups and of electron-withdrawing groups in electrophilic substitution of aromatic compounds
- Predict substitution products of aromatic compounds by directing effects and the importance to organic synthesis
- Oxidation of aldehydes to form carboxylic acids
- Nucleophilic addition reactions of carbonyl compounds to form alcohols and hydroxynitriles
- Mechanism for nucleophilic addition reactions of aldehydes and ketones NaBH_4 and HCN
- Uses of 2,4-dinitrophenylhydrazine when identifying carbonyl groups or compounds
- Use of Tollens' reagent to: detect the presence of an aldehyde group; distinguish between aldehydes and ketones
- Explain how Tollens' reagent distinguishes between aldehydes and ketones
- Explain the water solubility of carboxylic acids in terms of hydrogen bonding
- Reactions in aqueous conditions of carboxylic acids with metals and bases
- Esterification of: carboxylic acids with alcohols in the presence of an acid catalyst; acid anhydrides with alcohols
- Hydrolysis of esters: to form carboxylic acids and alcohols; to form carboxylate salts and alcohols
- Formation of acyl chlorides from carboxylic acids
- Use of acyl chlorides in synthesis in formation of esters, carboxylic acids and primary and secondary amides

6.2 Amines

R	A	G
---	---	---

6.2 Amines

- Basicity of amines in terms of proton acceptance by the nitrogen lone pair and the reactions of amines with dilute acids to form salts
- Preparation of: aliphatic amines by substitution of haloalkanes
- Preparation of: aromatic amines by reduction of nitroarenes
- General formula for an α -amino acid as $\text{RCH}(\text{NH}_2)\text{COOH}$
- Reactions of amino acids: carboxylic acid group with alkalis and in the formation of esters; amine group with acids
- Structures of primary and secondary amides
- Define optical isomerism and use it to draw 3-D diagrams
- Identify chiral centres in a molecule of any organic compound
- Condensation polymerisation to form polyesters and polyamides
- Acid and base hydrolysis of: the ester groups in polyesters; the amide groups in polyamides
- Predict from addition and condensation polymerisation: the repeat unit from a given monomer(s)
- Predict from addition and condensation polymerisation: the monomer(s) required for a given section of a polymer molecule
- Predict from addition and condensation polymerisation: the type of polymerisation.
- Use of C–C bond formation in synthesis to increase the length of a carbon chain
- Formation of $\text{C}=\text{N}$ by reaction of: haloalkanes with CN^- and ethanol, including nucleophilic substitution mechanism
- Formation of $\text{C}=\text{N}$ by reaction of: carbonyl compounds with HCN, including nucleophilic addition mechanism
- Reaction of nitriles: by reduction to form amines; by acid hydrolysis to form carboxylic acids
- Formation of a substituted aromatic C–C by alkylation and acylation
- Techniques and procedures used for the preparation and purification of organic solids involving use of a range of techniques
- Identify the functional groups and predict the properties and reactions for an organic molecule containing several functional groups
- Multi-stage synthetic routes for preparing organic compounds.

6.3 Analysis			
	R	A	G
Interpret one-way TLC chromatograms in terms of R _f values			
Interpret gas chromatograms in terms of: retention times; the amounts and proportions of the components in a mixture.			
Qualitative analysis of organic functional groups on a test-tube scale to identify the functional groups in an unknown compound			
Analysse a carbon-13 NMR spectrum of an organic molecule to make predictions about: the number of carbon environments in the molecule			
Analysse a carbon-13 NMR spectrum of an organic molecule to make predictions about: the different types of carbon environment present			
Analysse a carbon-13 NMR spectrum of an organic molecule to make predictions about: possible structures for the molecule			
Analysse a high resolution proton NMR spectrum to make predictions about: the number and type of proton environments in the molecule			
Analysse a high resolution proton NMR spectrum to make predictions about: relative numbers of each type of proton present			
Analysse a high resolution proton NMR spectrum to make predictions about: the number of non-equivalent protons adjacent to a given proton			
Analysse a high resolution proton NMR spectrum to make predictions about: possible structures for the molecule			
Predict a carbon-13 or proton NMR spectrum for a given molecule			
Use of tetramethylsilane, TMS, as the standard for chemical shift measurements			
The need for deuterated solvents when running an NMR spectrum			
The identification of O-H and N-H protons by proton exchange			
Deduce the structures of organic compounds from different analytical data			

6.3 Analysis